Abstract

International Ocean Discovery Program Expedition 357 drilled 17 boreholes across the Atlantis Massif with the goals of investigating carbon cycling and the presence of life in a zone of active serpentinization. The expedition recovered multiple lithologies including gabbros, basalts, carbonate sands, and serpentinites. A subset of contrasting lithologies were analyzed for apolar lipid content to determine if non-volatile organic molecules can be detected in the oceanic subsurface. The definitive detection and identification of abiotic and biological lipids in the subsurface of an actively serpentinizing system would be a significant step towards understanding a variety of scientific processes, including the evolution of pre-biotic chemistry, microbial habitability, and the global carbon cycle. Given the high potential for contamination during drilling, a suite of materials used in sample collection and processing were also analyzed to characterize their signatures. An n-alkane series ranging from C18 to C30with δ13C isotopic values of –30.9‰ to –28.8‰ was present in lithologically diverse samples. Multiple lines of evidence point to the rock saw used to remove core exteriors during sample processing as the source of these compounds. Many of the other sample-handling procedures designed to reduce surface contamination were determined to be effective and could be implemented in future projects. This result highlights the value of careful prevention and characterization of contamination to allow for more accurate interpretations of complex and dynamic subsurface processes, and the importance that future reports of these compounds occurs in conjunction with thorough contamination assessments.

Menu